快速检索:      
引用本文:
【打印本页】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 107次   下载 221 本文二维码信息
码上扫一扫!
分享到: 微信 更多
牛顿引力定律的一个几何特征
章梅荣
作者单位E-mail
章梅荣 清华大学 数学科学系, 北京 100084;清华大学 周培源应用数学研究中心, 北京 100084 mzhang@math.tsinghua.edu.cn 
摘要:
在牛顿的引力定律中,最为重要的事实是引力的大小是反比于质点之间的距离的平方.基于引力是沿着质点的连线方向并正比于质量的乘积之前提下,证明了引力的反平方距离的事实完全等价于两个均匀球体之间的引力可以归结于位于球心处的同质量质点之间的引力.事实上,这个几何要求将导致一个二阶的线性欧拉方程,其具有物理意义的解恰好是反比于距离的平方.
关键词:  牛顿引力定律  几何特征  积分方程  欧拉方程
DOI:10.3969/J.ISSN.100-5137.2017.03.012
分类号:
基金项目:This research was supported by the National Natural Science Foundation of China (No. 11231001, 11371213)
A geometric feature of the Newton law of gravitation
Zhang Meirong
Abstract:
In the Newton law of gravitation, the most miraculous fact is that the gravity is reciprocally proportional to the square of the distance between particles. In this paper, by assuming that the gravity is along with the line passing through particles and is proportional to the product of masses of particles, we will show that the above fact is equivalent to the geometric requirement that the gravity between two homogeneous balls is equal to that between two particles of the same masses located at the centers of balls. In fact, this will lead to a second-order Euler equation whose physical solution is reciprocally proportional to the square of the distance.
Key words:  Newton law of gravitation  geometric feature  integral equation  Euler equation