快速检索:      
引用本文:
【打印本页】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 1028次   下载 1064 本文二维码信息
码上扫一扫!
分享到: 微信 更多
基于二部分图网络结构推荐的改进算法
邓松, 邱静, 陈军华
上海师范大学 信息与机电工程学院, 上海 200234
摘要:
介绍了一种基于网络结构推荐的改进算法.在标准物质扩散算法的基础上,考虑到用户的评分对推荐商品的影响,对推荐算法中初始资源分配矢量和资源转移矩阵进行了改进,增加了调节因子.使用来源于GroupLens网站上的训练集数来评价这个推荐算法的性能,从而进行了一系列的实验.实验结果表明,该算法比传统的协同过滤系统、基于网络结构的推荐系统和带有权重的基于网络结构的推荐系统具有更好的推荐精度和更高的命中率,解决了标准物质扩散算法当中的冷启动问题和可扩展性问题,使得推荐结果具有多样性.
关键词:  推荐算法  物质扩散算法  冷启动问题  可扩展性问题  推荐多样性
DOI:10.3969/J.ISSN.1000-5137.2017.04.012
分类号:TP301.6
基金项目:
An improved recommended algorithm for network structure based on two partial graphs
Deng Song, Qiu Jing, Chen Junhua
The College of Information, Mechanical and Electrical Engineering, Shanghai Normal University, Shanghai 200234, China
Abstract:
In this thesis,we introduce an improved algorithm based on network structure.Based on the standard material diffusion algorithm,considering the influence of the user's score on the recommendation,the adjustment factor of the initial resource allocation vector and the resource transfer matrix in the recommendation algorithm is improved.Using the practical data set from GroupLens webite to evaluate the performance of the proposed algorithm,we performed a series of experiments.The experimental results reveal that it can yield better recommendation accuracy and has higher hitting rate than collaborative filtering,network-based inference.It can solve the problem of cold start and scalability in the standard material diffusion algorithm.And it also can make the recommendation results diversified.
Key words:  recommendation algorithm  standard material diffusion algorithm  the problem of cold start  the problem of capability  recommended diversity